1. <dd id="9ailp"><cite id="9ailp"></cite></dd>
      2. <option id="9ailp"><nobr id="9ailp"><code id="9ailp"></code></nobr></option>
      3. <optgroup id="9ailp"></optgroup>
        <var id="9ailp"><u id="9ailp"></u></var>

        1. <nobr id="9ailp"><nobr id="9ailp"></nobr></nobr>
          上海 江苏 浙江 安徽 PCB培训 PCB行业平台 邮箱登陆 联系我们
          纬亚联系电话:0512-57933566
          PCB设计-----PCB Design服务

          联系我们

          昆山纬亚PCB生产基地联系方式
          昆山纬亚电子科技有限公司

          公司地址:昆山市千灯镇善浦西路26号
          公司电话Tel:0512-50139595
          电子邮件Email: steven@pcbvia.com

          首页  技术支持  资料中心PCB设计-----PCB Design

          PCB设计-----PCB Design

          发布时间:2016-08-15 08:12:21 分类:资料中心

           布线(layout)是pcb设计工程师基本的工作技能之一。走线的好坏将直接影响到整个系统的性能,大多数高速的设计理论也要终经过layout得以实现并验证,由此可见,布线在高速pcb设计中是至关重要的。下面将针对实际布线中可能遇到的一些情况,分析其合理性,并给出一些比较优化的走线策略。主要从直角走线,差分走线,蛇形线等三个方面来阐述。
          1. 直角走线
          直角走线一般是pcb布线中要求尽量避免的情况,也几乎成为衡量布线好坏的标准之一,那么直角走线究竟会对信号传输产生多大的影响呢?从原理上说,直角走线会使传输线的线宽发生变化,造成阻抗的不连续。其实不光是直角走线,顿角,锐角走线都可能会造成阻抗变化的情况。
          直角走线的对信号的影响就是主要体现在三个方面:一是拐角可以等效为传输线上的容性负载,减缓上升时间;二是阻抗不连续会造成信号的反射;三是直角尖端产生的emi。
          传输线的直角带来的寄生电容可以由下面这个经验公式来计算:
          c=61w(er)1/2/z0 
          在上式中,c就是指拐角的等效电容(单位:pf),w指走线的宽度(单位:inch),εr指介质的介电常数,z0就是传输线的特征阻抗。举个例子,对于一个4mils的50欧姆传输线(εr为4.3)来说,一个直角带来的电容量大概为0.0101pf,进而可以估算由此引起的上升时间变化量:
          t10-90%=2.2*c*z0/2 = 2.2*0.0101*50/2 = 0.556ps
          通过计算可以看出,直角走线带来的电容效应是极其微小的。
          由于直角走线的线宽增加,该处的阻抗将减小,于是会产生一定的信号反射现象,我们可以根据传输线章节中提到的阻抗计算公式来算出线宽增加后的等效阻抗,然后根据经验公式计算反射系数:ρ=(zs-z0)/(zs+z0),一般直角走线导致的阻抗变化在7%-20%之间,因而反射系数大为0.1左右。而且,从下图可以看到,在w/2线长的时间内传输线阻抗变化到小,再经过w/2时间又恢复到正常的阻抗,整个发生阻抗变化的时间极短,往往在10ps之内,这样快而且微小的变化对一般的信号传输来说几乎是可以忽略的。
          很多人对直角走线都有这样的理解,认为尖端容易发射或接收电磁波,产生emi,这也成为许多人认为不能直角走线的理由之一。然而很多实际测试的结果显示,直角走线并不会比直线产生很明显的emi。也许目前的仪器性能,测试水平制约了测试的精确性,但至少说明了一个问题,直角走线的辐射已经小于仪器本身的测量误差。
          总的说来,直角走线并不是想象中的那么可怕。至少在ghz以下的应用中,其产生的任何诸如电容,反射,emi等效应在tdr测试中几乎体现不出来,高速pcb设计工程师的重点还是应该放在布局,电源/地设计,走线设计,过孔等其他方面。当然,尽管直角走线带来的影响不是很严重,但并不是说我们以后都可以走直角线,注意细节是每个优秀工程师必备的基本素质,而且,随着数字电路的飞速发展,pcb工程师处理的信号频率也会不断提高,到10ghz以上的rf设计领域,这些小小的直角都可能成为高速问题的重点对象。 

          2. 差分走线
          差分信号(differential signal)在高速电路设计中的应用越来越广泛,电路中关键的信号往往都要采用差分结构设计,什么另它这么倍受青睐呢?在pcb设计中又如何能保证其良好的性能呢?带着这两个问题,我们进行下一部分的讨论。
          何为差分信号?通俗地说,就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值来判断逻辑状态“0”还是“1”。而承载差分信号的那一对走线就称为差分走线。
          差分信号和普通的单端信号走线相比,明显的优势体现在以下三个方面:
          a.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。 
          b.能有效抑制emi,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。
          c.时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。目前流行的lvds(low voltage differential signaling)就是指这种小振幅差分信号技术。
          对于pcb工程师来说,关注的还是如何确保在实际走线中能完全发挥差分走线的这些优势。也许只要是接触过layout的人都会了解差分走线的一般要求,那就是“等长、等距”。等长是为了保证两个差分信号时刻保持相反极性,减少共模分量;等距则主要是为了保证两者差分阻抗一致,减少反射。“尽量靠近原则”有时候也是差分走线的要求之一。但所有这些规则都不是用来生搬硬套的,不少工程师似乎还不了解高速差分信号传输的本质。下面重点讨论一下pcb差分信号设计中几个常见的误区。

          来源:PCB设计-----PCB Design

          浏览"PCB设计-----PCB Design"的人还关注了

          版权所有:昆山纬亚电子科技有限公司      技术支持:李麟
          必赢平台 沁源县| 连江县| 都匀市| 永康市| 长子县| 军事| 嘉定区| 林州市| 云梦县| 锦屏县| 威远县| 建阳市| 琼中| 齐河县| 永宁县| 垦利县| 中卫市| 武强县| 微山县| 荔浦县| 佛山市| 赣州市| 白城市| 奉节县| 佛山市| 屯留县| 蒙山县| 太保市| 莆田市| 湛江市| 中宁县| 怀来县| 云和县| 东阳市| 孙吴县| 垣曲县| 霸州市| 汉阴县| 宜宾市| 安吉县| 大方县| http://444 http://444 http://444 http://444 http://444 http://444